You can’t retract a designer baby: #CRISPR, social justice, & risks

CRISPR baby retraction

You couldn’t just retract a genetically modified designer baby should something go wrong. Retraction stamp part of image from Medscape

There’s a questionable notion floating around out there in the numerous discussions over heritable human genetic modification.

This idea goes that if germline human gene editing goes awry for any number of reasons, scientists could simply reverse it by applying genetics again.

The reversal notion does not fit with the reality of science as we know them today and could be harmful in giving false reassurance of the safety of genome modification.

To put it another way, you can’t retract a designer baby or its genetic modifications if they are later proven to be problematic.

If human modification were done in the germline (sperm and eggs or in a 1-cell embryo), then for better or worse every one, barring chimerism, of the trillions of cells of the resulting genetically modified (GM) baby would have that genetic modification. How would you effectively reverse an unexpectedly deleterious hard-wired change in all of those cells? The reality is that it would be impossible. Trying to do so would also raise the very real possibility of introducing yet more problems as well.

If the reversibility notion of human genetic modification is meant instead in a broader population sense such that within the larger human population that accidentally harmful genetic changes could be reversed or at least their transmission stopped, what would that entail? Forcing people who carry such unexpectedly “bad” genetic changes not to reproduce? We need to consider social justice issues.

Or is reversibility only implied in the context of gene drive-based genetic modification introduced into organisms in a natural ecosystem rather than humans? Even there I’m doubtful reversal attempts would work and others are also skeptical.

Overall, scientists and others should use greater caution in discussing the notion of reversibility of genetic modification. It would not be as simple as portrayed sometimes. Other notions such as genetic “off switches” for modifications in organisms (while elegant systems in the laboratory setting) could also prove in the real world to be impractical amongst heterogeneous cells in an organism within a population of organisms.

This doesn’t mean that people should stop working on or thinking about reversal strategies or conditional approaches to genetic modification. Quite the opposite as that work is important and should continue, but the notion that one could “simply” reverse an introduced genetic problem is misleading and downplays legitimate concerns over safety. It also potentially exaggerates human control of genetics in the real world.

As some of you readers know, I’ve written a new book on human genetic modification including on possible use of CRISPR in people. In the book I discuss the potential upsides and risks of CRISPR’ing people. The book is called GMO Sapiens. In it I discuss something called “reproductive quarantine” where humans with unexpectedly negative genetic outcomes from modification attempts are prevented by governments from reproducing.

While CRISPR’ing people would be an experiment, if something goes wrong with it then unlike a bad experimental outcome in a test tube or in a dish, or even a profoundly flawed paper that can be retracted, I don’t see how you undo the harm at the very least to individuals.

More broadly this raises the point that in these kinds of hypothetical human genetic experiments, the person becomes the experiment, necessitating a higher level of discussion that includes bioethical and social justice considerations.

Poll: Would you have a genetically modified baby?


Please tell us in the comments why you voted the way you did.

TGIF science links: CRISPR, stem cells, caffeine, & more

I always like to do a bunch of science reading on the weekend when it’s quiet. Here are some TGIF science links to thought-provoking reading.CRISPR pigs






CRISPR stuff

Where in the world could the first CRISPR baby be born?

DIY CRISPR on the horizon soon?

CRISPR-y pigs to yield “bacon” of human organ transplants?

Stem Cells

Mini-kidney, nephron organoids from stem cells give hope

Still time to vote for the Stem Cell Person of the Year here.

German-US partnership on IPS cell including Jeanne Loring.

Sleepy stem cells are sad and bad for transplant?

Other interesting reads

DrugMonkey talks bad prof behavior

Want a downer? Check out the RetractionWatch leader board.

Cellebrate Cell Day in November.

Bees high on caffeine do what?