Cynata approval for 1st ever allo trial of IPSC-derived MSCs for GVHD

cynataCynata Therapeutics Limited has received approval from UK regulators to start a first-of-its-kind allogeneic IPSC-based trial of MSCs for graft versus host disease (GVHD). Cynata also had some big news a couple weeks back with a deal with Fujifilm.

The company is aiming to recruit 16 patients to test whether the MSCs (a type of adult stem cell) made from pluripotent stem cells created in the lab is safe and eventually whether it can aid patients facing GVHD, a potentially life threatening consequence of bone marrow/hematopoietic stem cell transplantation. There are 4 key bullet points the company released on the study:

  • “UK regulatory authority MHRA approves Phase 1 trial with Cymerus(TM) MSCs
  • World first clinical trial with allogeneic iPSC-derived product
  • Major milestone for stem cell therapeutics and regenerative medicine
  • Cements Cynata’s global leadership in second generation MSC therapeutics”

Another allogeneic IPSC study, this one in Japan and led by Masayo Takahashi, appears to be on the cusp of beginning using IPSC-derived retinal pigmented epithelial cells (RPEs) to treat macular degeneration. An earlier related autologous clinical study began with one patient receiving autologous IPSC-derived RPEs, but was halted due to regulatory changes in Japan. Also, IPSC-derived RPEs from a different patient were found to have a few mutations, which I’m still unclear as to whether had any significance.

Takahashi’s team just published a couple important papers on the allogeneic therapy reporting encouraging pre-clinical data in non-human primates where there wasn’t rejection. My sense is that their human clinical study is likely to start early in 2017.

I expect between these trials and other coming new ones we could see a half-dozen or so IPSC-based trials in the works by the end of 2017. Exciting times in the pluripotent stem cell-based clinical translation arena.

One question here with Cynata’s approach that first comes to mind relates to the question or autologous versus allogeneic therapies.

Continue reading

Stem cell treatment cost 2.0: legit therapy

stem cells costWe hear so much about exciting potential stem cell therapies. Some of these are rigorously evaluated ones in the FDA clinical trial pipeline and others are available right now mainly through predatory stem cell clinics. Earlier this year I posted about the cost of the offerings of dubious stem cell clinics.

In this post, I address the cost of a future, legitimate, FDA-approved stem cell therapy. How high will that be?

This is a critical question because if many patients cannot afford a stem cell therapy then the impact of that therapy is reduced. Cost is inversely related to access. On the other hand, stem cell biotechs must make some profit or they will go out of business. Investors, who are often enthusiastic boosters of the stem cell field, will lose large sums of money and confidence in the field too in that scenario if stem cell treatments are priced “too low”. What is the “right” price?

There is likely to be increasing pressure on biologics drug prices as well from the federal government. Witness Hillary Clinton’s recent tweet on this topic below that sent people into a tizzy.

At the state level, such as here in California, the question of stem cell treatment cost is also becoming more pressing including for our state stem cell agency, CIRM. As CIRM-funded clinical trials advance, which is a wonderful thing, at the same time we get closer to where someone will have to decide on stem cell price tags.

We can look at what other cellular drugs have cost as guidance for the price tag range for stem cell treatments. For instance, Prochymal (its old name under Osiris) that is now rebranded as TEMCELL from Mesoblast/JCR likely will cost about $200K for a full treatment for GVHD (HT to Alexey). Provenge, the cellular prostate cancer drug from the controversial biotech Dendreon had (has?) a price tag of $93K. The most expensive drug in history, the gene therapy med Glybera will cost around $1.5 million per patient.

Realistically, a typical legit stem cell therapy could easily be $100K per patient. A personalized cellular medicine such as an autologous stem cell-based therapy could easily run into the hundreds of thousands per patient. Some therapies could go as high as $500,000 (see this helpful piece by David Jensen) or even into the millions.

Irv Arons

Irv Arons (@iarons) has come up with a great table of cost estimates focused in the area of vision therapy (free registration required). Thanks to Irv for permission to use it here (above).

How will patients afford such expensive therapies?

Will such therapies be covered by governmental agencies or insurance companies? They should.

We should also be keeping in mind the current costs of treating today’s patients with major and sometimes chronic diseases. These costs run into the hundreds of billions or above a trillion dollars each year in the US alone. That’s important context and rightly indicates that the costs of stem cell therapies to society may be appropriate even if at an individual level they seem high.

How does this compare to stem cell treatments at predatory clinics?

Such “treatments” range from $5,000-$20,000 each and most patients with whom I have talked either received or were pitched at least two such treatments, amplifying the total cost. The cost to the clinic of the treatment itself can be as low as $500-$1,000. Some clinics claim to have treated thousands of patients suggesting they are making millions in profits.

Why are stem cell clinic offerings typically relatively cheaper than legit treatments? Frankly, it is because they don’t follow the rules or do the necessary studies to prove safety and efficacy. Ten thousand dollars is still a lot to pay for something that doesn’t work and could even be harmful.

Even so some consumers may perceive dubious stem cell treatments as the way to go because of the lower cost, particularly if the legitimate stem cell field fails to do a good job at educational outreach and the FDA continues to effectively do nothing about the stem cell clinic problem.

The bottom line remains a question. Where’s the stem cell price sweet spot where we can help the most patients, but also generate a needed profit for the biotechs?

We need to find an answer to this question soon.